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I. Statistical models and statistical manifolds

In mathematical statistics the data from a sample are interpreted as
realizations of stochastically independent random variables. Furthermore
one assumes that the data to be analyzed are distributed according to
a probability measure in a given statistical model. A statistical model
M := {(px, x ∈ M)} is a family in the set Cap(Ω, ω) of all probability
measures on a sample space (Ω,A, dω). For many reasons we assume that
both M and Ω are differentiable manifolds, moreover dω is a given Borel
measure on Ω. Under this assumption we identify elements of Cap(Ω, ω)
with density functions p(x, ω) ∈ C∞(M × Ω) which satisfy the following
conditions

p(x, ω) ≥ 0 ∀x ∈M,ω ∈ Ω,∫
Ω
p(x, ω) dω = 1.

Around 60-70th years in the last century Nikolai Chentsov in Moscow and
Shun-ichi Amari in Tokyo independently discovered an important natural
geometric structure on statistical models. This geometric structure consists
of the Fisher metric gF and a family ∇α of torsion-free α-connections, which
are called Amari-Chentsov connections. The Fisher metric on a statistical
manifold M ⊂ Cap(Ω, ω) is defined by

(0.1) gF (V,W )x :=

∫
Ω

(∂V ln p(x, ω))(∂W ln p(x, ω))dpx.

The family of Amari-Chentsov connections ∇α is defined as follows

(0.2) (∇α −∇LV )(X,Y, Z) = αTAC ,

where ∇LV denotes the Levi-Civita connection of the Riemannian metric
gF , and

(0.3) TAC :=

∫
Ω

(∂X ln p(x, ω))(∂Y ln p(x, ω))(∂Z ln p(x, ω)) dpx.
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The 3-symmetric tensor TAC is called the Amari-Chentsov tensor.

Example 1. The space CapN of all probability measures on a finite
sample space ΩN of N elementary events is a statistical model. Let us
denote by fi the probability distribution on ΩN such that fi(ωj) = δij . Each

element f ∈ CapN can be written as
∑N

i=1 pifi, where pi ≥ 0 und
∑
pi = 1.

The interior part CapN+ of CapN can be described by the following equation

CapN+ = {(p1, · · · , pN , | pi > 0 ∀i = 1, N &
∑

pi = 1}.

Clearly CapN+ is an open manifold of dimension N − 1. The following map

φ : CapN+ → SN−1
+ (2),

(p1, · · · , pN ) 7→ (q1 = 2
√
p1, · · · , qN = 2

√
pN ).

is an isometry between Riemannian manifolds (CapN+ , g
F ) and (SN−1

+ (2), g0),
where g0 is the metric of constant curvature, induced from the Euclidean
metric on RN . Now let us denote by T0 the following tensor on RN+

T0(x1, · · · , xN ) =
N∑
i=1

(dx3
i )

xi
.

Then the Amari-Chentsov tensor TAC on CapN+ is equal to φ∗(T0)|SN−1
+

.

Example 2. The 2-dimensional Gaussian statistical model (N (µ, σ2), gF , TCA)
consists of normal distributions {p(µ, σ, ω)|µ ∈ R, σ > 0} on (R, dω) defined
by

p(µ, σ, ω) :=
1√
2πσ

exp(
−(ω − µ)2

2σ2
).

Its Fisher metric and Amari-Chentsov tensor are defined by

gF (∂µ, ∂µ)(µ,σ) =
1

σ2
,

gF (∂µ, ∂σ)(µ,σ) = 0,

gF (∂σ, ∂σ)(µ,σ) =
2

σ2
.

TCA(∂µ, ∂µ, ∂µ)(µ,σ) = 0 = TCA(∂µ, ∂σ, ∂σ)(µ,σ),

TCA(∂µ, ∂µ, ∂σ)(µ,σ) =
2

σ3
=

1

4
TCA(∂σ, ∂σ, ∂σ)(µ,σ).

We note that (N (µ, σ2), gF ) is a hyperbolic half-plane.

Because of the importance of the Fisher metric and the Amari-Chentsov
connections, Stephen Lauritzen introduced the notion of a statistical mani-
fold.

Definition 1. (Lauritzen, 1987). A statistical manifold (Mm, g, T ) ist
a Riemannian manifold (Mm, g) provided with a 3-symmetric tensor T ∈
Γ(S3(T ∗M)).
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There are many important examples of statistical manifolds except sta-
tistical models provided with the Fisher metric gF and the Amari-Chentsov
tensor. For example, Riemannian manifolds (M, g, T = 0), and Lagrangian
submanifolds L in a Kähler manifold (M,J, g), where g = g|L, T (X,Y, Z) =
〈∇XY, JZ〉 are statistical manifolds.

II Immersion problems of statistical manifolds

To make sure that the notion of a statistical manifold is a right concept,
Lauritzen asked if any statistical manifold is a statistical model. Lauritzen’s
question is equivalent to the following problem. Let (M, g, T ) be a statistical
manifold. Are there a probability space (Ω,A, dω) and an immersion of M
in the space Cap(Ω, dω) of all probability distributions on (Ω, dω) such that
g and T are induced from the Fisher metric and the Chentsov-Amari tensor
on the space Cap(Ω, dω)?

Definition 2. Assume that (M1, g1, T1) and (M2, g2, T2) are statistical
manifolds. An immersion f : M1 → M2 is called statistical, if f∗(g2) = g1

and f∗(T2) = T1.

Motivated by the problem of parameter estimation in mathematical statis-
tics Amari also asked if any statistical model can be regarded as a subfamily
in some space CapN for N <∞.

We note that the immersion problem for statistical manifolds can be con-
sidered as an immersion problem for Riemannian manifolds provided with
a constraint - a 3-symmetric tensor.

In this lecture we will explain the following theorem, which gives a positive
answer to the Lauritzen and Amari questions.

Main Theorem. [6] Each statistical manifold (Mm, g, T ) is a statistical
model. More precisely, for N = 4(m + 1)[2(m(m + 1) − 1)m(m + 1) + 2 +
m) + (m+ 2)(m+ 3)] there exists a statistical immersion of (Mm, g, T ) into
the statistical model (CapN , gF , TCA).

As a direct consequence of the Main Theorem we obtain

Corollary 1. [3] On each statistical manifold (M, g, T ) there exists a
contrast function f ∈ C∞(M ×M) which generates the Riemannian metric
g and the 3-symmetric tensor T , i.e.

g(X,Y )(x,x) = Hess(K)(i1(X), i1(Y )),

T (X,Y, Z)x = −∂i2(Z)Hess(ρ)(i1(X), i1(Y ))(x,x)+∂i1(Z)Hess(ρ)(i2(X), i2(Y ))(x,x),

where the embedding i1, i2 : TxM → T(x,x)M ×M are defined by the follow-
ing formula

T(x,x)(M ×M) = (TxM, 0)⊕ (0, TxM) = i1(TxM)⊕ i2(TxM).
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III Monotone invariants and statistical immersions

In the study of statistical immersions we discover an important class of
invariants of statistical manifolds, which we call monotone invariants. A
monotone invariant is a functor from the category of statistical manifolds
whose morphisms are statistical immersions to another category, e.g. the
category (R,≤) of real numbers whose morphisms are the relation (≤).

Clearly monotone invariants are obstructions to the existence of statistical
immersions.

We begin our systematical study of monotone invariants with the subcat-
egory of linear statistical manifolds (Rn, g0, T ), where g0 =

∑n
i=1(dxi)2, T is

a constant 3-symmetric tensor on Rn, and morphisms are linear immersions
of statistical manifolds. A simple way to find monotone invariants for this
subcategory is to use the representation theory.

Let us look at the decomposition of the space S3(Rn)∗ into irreducible
O(n)-modules.

(1) S3(Rn)∗ = R(3π1)⊕Rn.
Thus each tensor T ∈ S3(Rn)∗ can be decomposed into two irreducible
components, one of them is defined explicitly as follows

(2) Tr : S3(Rn)∗ → Rn φ
= (Rn)∗, 〈Tr(T ), v〉 := Tr(vcT ),

where vcT is a quadratic form on Rn and Tr(vcT ) is its trace. The linear
map φ : (Rn)∗ → Rn is defined by v∗ 7→ T v

∗
:= v∗ • g0 ∈ S3(Rn)∗. Set

(3) π1 : S3(Rn)∗ → R(3π1), T 7→ T − Tr(T ).

Using (2) and (3) we define the following functor - monotone invariant

T̂ r : {(Rn, g, T )} → {R×R, (a, b)
m7→ (a′, b′) iff 0 < a ≤ a′, otherwise if a′ = 0 &b ≤ b′},

T 7→ (||π1(T )||, ||Tr(T )||).
Here are some other examples of monotone invariants for linear statistical

manifolds. For (Rn, g0, T ) and 1 ≤ k ≤ n set

M3(T ) := max
|x|=1,|y|=1,|z|=1

T (x, y, z),

M2(T ) := max
|x|=1,|y|=1

T (x, y, y),

M1(T ) := max
|x|=1

T (x, x, x),

λk(T ) := min
Rk⊂Rn

M1(T|Rk).

Monotone invariants also provide sufficient conditions for the existence of
statistical immersions.

Proposition 1. 1. (Rk, g0, T ) can be statistically embedded into (RN , g0, T
v∗),

if and only if N ≥ k and T = Tw
∗

with ||w∗|| ≤ ||v∗||.
2. A statistical line (R, g0, T ) can be statistically embedded into (RN , g0, T

′),
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if and only if M1(T ) ≤M1(T ′).
3. We can always statistically embed the 2-dimensional statistical space
(R2, g0, 0) into any linear statistical space (Rn, g0, T ), if n ≥ 7.
4. Any statistical space (Rn, g0, T ) can be statistically embedded into the

statistical space (Rn(n+1), g0, T
′ = 2||T ||

∑N(n)
i=1 x3

i ), where xi are the canon-

ical Euclidean coordinates on Rn(n+1).
5. The trivial space (Rn, g0, 0) can be statistically embedded into (R2n, g0,

∑2n
i=1(dxi)3)

for all n.

To get monotone invariants for non-linear statistical manifolds we com-
bine the min-max argument and monotone invariants for linear statistical
manifolds. Here is an simple example of a monotone invariant of statistical
manifolds obtained in this way.

M1(M) := sup
x∈M

max
v∈TxM,|v|g=1

T (v, v, v).

We have also another type of monotone invariants. For ρ > 0 let

dρ(M, g, T ) := sup{l ∈ R+∪∞ |∃ a statistical immersion of ([0, l], dx2, ρ(dx)3) to (M, g, T )}.
dρ(M, g, T ) is called the diameter with weight ρ of (M, g, T ). Clearly dρ are
monotone invariants for all ρ.

Proposition 2. For any given ρ the diameter with weight ρ of CapN is
equal to infinity, if N ≥ 4.

As a corollary of Proposition 2 we obtain

Proposition 3. The statistical model CapN cannot be statistical im-
mersed into a direct product of m copies of the normal Gaussian statistical
manifold R2 for any N ≥ 3 and any finite number m.

An outline of the proof of the Main Theorem using monotone invariants
will be given in the lecture.

At the end of the lecture we will discuss the relations between statistical
immersions and statistical embeddings, as well as some open problems.
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